On the computation of class numbers of real abelian fields
نویسنده
چکیده
In this paper we give a procedure to search for prime divisors of class numbers of real abelian fields and present a table of odd primes < 10000 not dividing the degree that divide the class numbers of fields of conductor ≤ 2000. Cohen–Lenstra heuristics allow us to conjecture that no larger prime divisors should exist. Previous computations have been largely limited to prime power conductors.
منابع مشابه
Efficient Computation of Class Numbers of Real Abelian Number Fields
Let {Km} be a parametrized family of real abelian number fields of known regulators, e.g. the simplest cubic fields associated with the Q-irreducible cubic polynomials Pm(x) = x −mx2 − (m+ 3)x− 1. We develop two methods for computing the class numbers of these Km’s. As a byproduct of our computation, we found 32 cyclotomic fields Q(ζp) of prime conductors p < 10 for which some prime q ≥ p divid...
متن کاملComputation of relative class numbers of CM-fields by using Hecke L-functions
We develop an efficient technique for computing values at s = 1 of Hecke L-functions. We apply this technique to the computation of relative class numbers of non-abelian CM-fields N which are abelian extensions of some totally real subfield L. We note that the smaller the degree of L the more efficient our technique is. In particular, our technique is very efficient whenever instead of simply c...
متن کاملComputation of the p-part of the ideal class group of certain real abelian fields
Under Greenberg’s conjecture, we give an efficient method to compute the p-part of the ideal class group of certain real abelian fields by using cyclotomic units, Gauss sums and prime numbers. As numerical examples, we compute the p-part of the ideal class group of the maximal real subfield of Q( √ −f, ζpn+1) in the range 1 < f < 200 and 5 ≤ p < 100000. In order to explain our method, we show a...
متن کاملComputation of class numbers of quadratic number fields
We explain how one can dispense with the numerical computation of approximations to the transcendental integral functions involved when computing class numbers of quadratic number fields. We therefore end up with a simpler and faster method for computing class numbers of quadratic number fields. We also explain how to end up with a simpler and faster method for computing relative class numbers ...
متن کاملEfficient computation of root numbers and class numbers of parametrized families of real abelian number fields
Let {Km} be a parametrized family of simplest real cyclic cubic, quartic, quintic or sextic number fields of known regulators, e.g., the so-called simplest cubic and quartic fields associated with the polynomials Pm(x) = x3 − mx2 − (m + 3)x + 1 and Pm(x) = x4 − mx3 − 6x2 + mx + 1. We give explicit formulas for powers of the Gaussian sums attached to the characters associated with these simplest...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Comput.
دوره 78 شماره
صفحات -
تاریخ انتشار 2009